The Chinese University of Hong Kong Department of Mathematics MMAT 5340 Probability and Stochastic Analysis

Homework 4: Stopping Times

Due Date: 23:59 pm on Tuesday, February 20th, 2024. Please submit your homework on Blackboard

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_n)_{n \geq 0}$.
 - (a) Let τ_1, τ_2 be two \mathbb{F} -stopping times. Prove that

$$\tau_1 \wedge \tau_2 := \min(\tau_1, \tau_2)$$

$$\tau_1 \vee \tau_2 := \max(\tau_1, \tau_2)$$

are both stopping times.

- (b) Let τ be an \mathbb{F} -stopping time. Prove that $\tau + 1$ is also an \mathbb{F} -stopping time.
- 2. Let $X_0 = 0, X_n = \sum_{k=1}^n \xi_k$, where $(\xi_k)_{k \ge 1}$ is a sequence of independent and identically distributed random variables such that $\mathbb{P}[\xi_k = \pm 1] = \frac{1}{2}$. Let M and N be two positive integers and define

$$\tau := \min\{n \ge 0 : X_n = -N \text{ or } X_n = M\}.$$

- (a) Prove that τ is an \mathbb{F} -stopping time, where \mathbb{F} is the natural filtration generated by X.
- (b) Assume that $\tau < +\infty$ a.s., prove that $\mathbb{P}[X_{\tau} \in \{-N, M\}] = 1$.
- (c) Under the condition of (b), compute $\mathbb{E}[X_{\tau}]$ and $\mathbb{P}[X_{\tau} = -N]$. Hint: Let X be a martingale and τ be a stopping time with respect to a filtration \mathbb{F} , and if $\tau < \infty$ and the process $(X_{\tau \wedge n})_{n \geq 0}$ is uniformly bounded. Then $\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0]$.